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BSA - Bi-Stiffness Actuation for optimally exploiting intrinsic
compliance and inertial coupling effects in elastic joint robots

Dennis Ossadnik, Mehmet C. Yildirim, Fan Wu, Abdalla Swikir, Hugo T. M. Kussaba,
Saeed Abdolshah and Sami Haddadin∗

Abstract—Compliance in actuation has been exploited to
generate highly dynamic maneuvers such as throwing that
take advantage of the potential energy stored in joint springs.
However, the energy storage and release could not be well-timed
yet. On the contrary, for multi-link systems, the natural system
dynamics might even work against the actual goal. With the
introduction of variable stiffness actuators, this problem has been
partially addressed. With a suitable optimal control strategy,
the approximate decoupling of the motor from the link can be
achieved to maximize the energy transfer into the distal link
prior to launch. However, such continuous stiffness variation
is complex and typically leads to oscillatory swing-up motions
instead of clear launch sequences. To circumvent this issue, we
investigate decoupling for speed maximization with a dedicated
novel actuator concept denoted Bi-Stiffness Actuation. With this,
it is possible to fully decouple the link from the joint mechanism
by a switch-and-hold clutch and simultaneously keep the elastic
energy stored. We show that with this novel paradigm, it is not
only possible to reach the same optimal performance as with
power-equivalent variable stiffness actuation, but even directly
control the energy transfer timing. This is a major step forward
compared to previous optimal control approaches, which rely on
optimizing the full time-series control input.

I. INTRODUCTION

The capability of biological muscles to serve as both motors
and springs is the reason for their high energy efficiency and
performance compared to the commonly used rigid actuators
in robotics. There have been efforts to reach similar per-
formance in the robotics community by introducing elastic
elements in the drive-train [1]. For example, series elastic
actuators (SEAs) [2] implement an elastic component with
fixed stiffness in series to the motor.

Due to their capability to store and release energy in
the spring, SEAs are capable of highly dynamic maneuvers,
outperforming the rigid actuator. Previous works investigating
explosive movements [3], [4] show that the control signals
for maximizing the end-link velocity are of bang-bang type
[5], resulting in a resonant excitation. However, this strategy
cannot be observed in biological systems. Players of ball
sports, for example, utilize their muscular strength in a very
fast, coordinated stroking movement [6].

In handball, the throwing movement involves a sequential
action of proximal to distal body segments [7]. In trained
individuals, the muscles are only active for a small fraction
of the total motion duration. Each segment in the kinematic
chain has to contribute at exactly the right time to transfer
the energy to the distal parts of the chain. This inertia timing
might be the key to understanding the optimal coordination of
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Fig. 1. By taking advantage of inertia timing and decoupling, we can precisely
control the timing of energy transfer in an elastic double pendulum similar to
launching a trebuchet.

fast movements. As Lehnertz points out in [8], “the available
muscle strength can only be converted into optimal movement
speed by making the best possible use of the inertial forces
that occur.” In SEAs, such a sequence is impossible, since “the
timing of energy storage and release is not independent” [9].

With the introduction of variable stiffness actuators (VSAs),
which employ a second actuator for stiffness adaptation [10]–
[13], this problem could be partially addressed. The inertia
timing phenomenon was investigated in [4], where the end-
link velocity of a double pendulum driven by VSAs was
maximized by leveraging energy storage and release. The
problem was formulated as an optimization problem, and its
solution resulted in bang-bang-like signals of both the motor
velocity and spring stiffness. It is important to mention that
those signals were generated due to the ability to set the
stiffness to zero, which in turn made it possible to fully
decouple the link side. The result holds for low final times
in the optimization problem. Using a higher final time, again
resonant excitation can be dominant, similar to the SEA case.

Recently, another highly promising type of actuation has
emerged: Clutched elastic actuators (CEAs) [9] employ
clutches in the drivetrain to for example lock or bypass springs
[14], [15]. With a suitable choice of clutch mechanism, it is
possible to directly control the timing of energy storage and
release.

A. Contribution
To address the issue of VSAs being unable to directly

control the energy transfer timing, we propose a novel Bi-
Stiffness Actuation (BSA) concept based on a clutch mecha-
nism and investigate how inertial decoupling can be optimally
exploited for explosive movements. By encoding a proximal-
distal mode sequence inspired by biological systems, the
optimal control problem for such a hybrid system is simplified
and allows direct control of the transition timing. A double
pendulum equipped with our actuator thus can be launched like
a trebuchet (Fig. 1). Numerical experiments were performed
to (1) maximize end-link velocity and (2) minimize control
efforts for a fixed target velocity. The results demonstrate that
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• Our actuator is capable of precisely controlling the timing
of energy storage and release,

• By ensuring both VSA and BSA have the same power
input, we reach similar performance in terms of the
maximum end-link velocity,

• We avoid resonant excitation and always obtain an opti-
mal control solution that results in a catapult-like rapid
conversion of potential energy.

The paper is organized as follows: In Section II, we introduce
the dynamic model of the proposed actuator concept and
restate the dynamics of the previously suggested VSA model.
Then, in Section III, we evaluate the actuator and give a
conclusion in Section IV.

II. MODELING

In this section, we briefly outline the concept for a single
BSA actuator. Then, we derive a hybrid system model for an
elastic double pendulum that is actuated by either two BSAs
or two VSAs and discuss the power flow for each system.
Additionally, we derive a frictional contact model for the BSA
to account for transient slipping dynamics that might occur in
a physical prototype of the system.

A. BSA Concept
Our concept consists of a motor that is connected to a

spring, similar to a series elastic actuator (SEA). The spring
inertia is connected to a switch-and-hold mechanism c, which
either brakes the spring or connects it to the link-side. A sketch
of the system can be seen in Fig. 2. The explicit modeling of
the spring inertia is an important aspect of this model, which
will become evident in our hybrid system formulation later in
this section.

τm
θ, θ̇

Jm Js

Kt

q, q̇Jl

ψ, ψ̇

τlτk
c

Fig. 2. Sketch of the proposed actuator. The spring inertia can be locked in
place, while the link is decoupled or connected directly to the link. We can
therefore distinguish two distinct modes: The decoupled mode (DEC) and the
series elastic actuator mode (SEA).

To simplify the formulation of the optimal control problem,
we model the motor as an ideal velocity source. Instead of
the motor torque τm, we now assume the motor velocity θ̇
as an input. The spring inertia is subject to the spring torque
τk = Kt(θ− ψ), where Kt, θ, and ψ are the spring stiffness,
the motor angle, and spring output angle, respectively.

B. Double pendulum actuated by two BSAs
The decoupling capability of our actuator becomes espe-

cially important when dealing with nonlinear dynamics, where
inertial coupling is present. As a simple example for such a
system, we are going to analyse a double pendulum driven by
two BSAs, see Fig. 3.

We employ Spongs’ assumption that the coupling between
actuator and link acts solely through the link torque τl [16].
By introducing the vector of spring ψ = [ψ1, ψ2]

T and link

θ1, θ̇1

q1, q̇1
ψ1, ψ̇1

c1

c2
θ2, θ̇2

q2, q̇2

ψ2, ψ̇2

Fig. 3. Sketch of the 2-DoF pendulum actuated by two BSAs. The double
pendulum has four modes in total, which depend on the state of the switching
clutches c1 and c2. Each joint is either in SEA or DEC mode.

TABLE I
ACTUATOR MODES. IF ci = 0 THE SWITCH IS CONNECTED TO THE

GROUND, ELSE IF ci = 1 IT IS CONNECTED TO THE LINK.

Mode p c1 c2 Constraint Matrix C

DEC-DEC 1 0 0
[
1 0 0 0
0 1 0 0

]
SEA-SEA 2 1 1

[
1 0 −1 0
0 1 0 −1

]
DEC-SEA 3 0 1

[
1 0 0 0
0 1 0 −1

]
SEA-DEC 4 1 0

[
1 0 −1 0
0 1 0 0

]

positions q = [q1, q2]
T and defining ξ := [ψ, q]T ∈ R4, the

dynamics of the system can be formulated as[
B 0
0 M(q)

]
︸ ︷︷ ︸

=:Π(ξ)

ξ̈ +

[
0

h(q, q̇)

]
︸ ︷︷ ︸
=:η(ξ,ξ̇)

+

[
K(θ −ψ)

0

]
︸ ︷︷ ︸

=:τk

= CT
pλ, (1)

Cpξ̇ = 0, (2)

where B = diag([Js, Js]), M(q), K ∈ R2×2, h(q, q̇) ∈ R2

is the spring inertia matrix, the link-side inertia matrix, the
stiffness matrix, and the link-side nonlinear bias term, re-
spectively. The vector λ ∈ R4 is the constraint torque, and
θ = [θ1, θ2]

T is the motor position obtained by integrating the
motor velocity, denoted by θ̇ = [θ̇1, θ̇2]

T. Similar to the single
actuator, we assume that the motor is an ideal velocity source.
The matrix Cp defines the switching through the switch-
and-hold mechanism. More precisely, we use the clutch to
prevent the relative motion between the spring and the link-
side [9]. If the switch-and-hold mechanism brakes the spring
inertia, ψ̇ = 0 must hold. If it connects the spring inertia
to the link-side, the spring and link velocities must match,
i.e. ψ̇ = q̇. These conditions can be easily encoded into the
oriented incidence matrix Cp. Since there are two actuators
with one switch-and-hold mechanism each, there are in total
four modes for the double pendulum. The constraint matrices
for each mode can be found in Table I.

In order to continue modeling the proposed mechanism as
a hybrid system, there are two main points that need to be
taken into account, as follows.
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Constraint torque elimination. The following derivation
closely follows [17]. For brevity, the dependency on ξ and ξ̇
is omitted. Differentiating (2) yields

Cpξ̈ +�
��Ċpξ̇ = 0.

We now left-multiply (1) by CpΠ
−1, which leads to

�
��Cpξ̈ +CpΠ

−1τ k +CpΠ
−1η = CpΠ

−1CT
pλ.

We can now directly calculate the constraint torques and
eliminate them from the equations of motion:

λ = (CpΠ
−1CT

p )
−1CpΠ

−1(τ k + η). (3)

Here, we denoted the constraint torques’ dependence Cp by
adding a subscript p.

Impact analysis. The system exhibits an instantaneous
jump in the velocities upon mode transition. Similar to [17]–
[20], we assume that
A1) an impact occurs whenever there is a change in contact

situation (i.e. toggling the switch-and-hold mechanism);
A2) the impact is instantaneous;
A3) the forces due to the impact can be represented by

impulses;
A4) the motors do not generate impulses and do not have to

be considered in the analysis; and,
A5) there is no discontinuity in the positions, but an instan-

taneous change in the actuators’ velocities.
Under these assumptions, the following equation between
differential measures can be obtained [21]

Π(ξ) dξ̇ + η(ξ, ξ̇) dt = −τ k dt+CT
pdλp, (4)

with the differential measures dξ̇ and dλp satisfying

dξ̇ = ξ̈ dt+ (ξ̇
+
− ξ̇
−
) dν,

dλp = λp dt+ Λp dν,

where ξ̇
+

:= limt→t+c ξ̇(t), ξ̇
−

:= limt→t−c ξ̇(t), dν is the
atomic measure, and Λp is the contact impulse [21]. We refer
interested readers to [21], [22] for detailed information on
differential measures and the atomic measure used in this
paper.

Integrating (4) over an instant tc where the impulse Λp is
non-zero yields the conservation of momentum equation [21]

Π(ξ)(ξ̇
+
− ξ̇
−
) = CT

pΛp.

Since Cpξ̇
+

= 0 must hold, we can solve for the impulse
directly and obtain an expression for the updated velocity

ξ̇
+
= ξ̇
−
+ Π−1CT

pΛp, (5)

Λp = −(CpΠ
−1CT

p )
−1Cpξ̇

−
.

Now, we have all the ingredients to formally describe the
double pendulum system actuated by two BSAs as a hybrid
system.

Hybrid system model. The overall dynamics of our system
is characterized by the interaction of continuous and discrete
dynamics. The switching between the modes is controlled by
the user, and the velocity is reset after switching according to
equation (5). Formally, such a system can be described as a
switched system with impulsive effects [23], which is a special
form of a hybrid system. We define the continuous state x :=

[θ, ξ, ξ̇]T ∈ R10, the control input1 u = uθ ∈ R2 and the
index set P = {1, 2, 3, 4}. Now, the state space dynamics of
the system for the modes p ∈ P can be formulated as

ẋ = fp(x,u) :=

 uθ
ξ̇

Π−1(CT
pλp − η − τ k)

 . (6)

We impose the usual regularity assumptions on, fp such that
the solutions of the differential equation (6) are well-defined
[24]. Moreover, we define the jump map that describes the
discrete dynamics governing the transition to a mode p ∈ P
as

x+ = gp(x
−) :=

 θ−

ξ−

ξ̇
−
+ Π−1CT

pΛp

 . (7)

We also define a switching signal σ : R+ → P such that,
given the family in equation (6) and (7), a switched-impulsive
system

ẋ = fσ(x,u), x
+ = gσ(x

−) (8)

is generated. Please note that, in our setting, the switching
signal σ is another control signal. In other words, the user
determines when switching should take place, i.e. when the
clutches should be opened and closed.

For sake of completeness and later comparison, we will
briefly go over the process of modeling the VSA system in
the following subsection.

C. VSA Modeling

We proceed to model the VSA system. The equations of
motion for this system are given by

M(q)q̈ + h(q, q̇) +K(θ − q) = 0. (9)

Again, we model the motor as an ideal velocity source. Here,
K = diag(k), with the individual stiffness values being sum-
marized in a vector k = [K1,K2]

T. The stiffness values can
be dynamically changed by a stiffness adjusting mechanism.
Instead of explicitly modeling this mechanism, we consider the
velocity of the stiffness adjustment as another control input.
Defining the state x := [θ,k, q, q̇]T ∈ R8 and the control input
u = [uθ,uk]

T ∈ R4, the state space dynamics of the VSA
can now be formulated as

ẋ = f(x,u) :=

 uθ
uk
q̇

M−1(−h−K(θ − q))

 . (10)

In addition to the system dynamics, we elaborate in the next
section on the differences in the power flow between BSA and
VSA.

1The index θ is used to emphasize that the control input is the motor
velocity and to distinguish it from the stiffness adjustment control that comes
later in Section II-C.
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D. Power flow
For comparing the energy efficiency of both actuators, we

have to consider the power flow from the motors into the
spring as well as the power flow from the spring into the
link-side. A schematic overview of the power flow for both
systems can be seen in Fig. 4 and 5 (drawn similar to [25]).
Since no damping is assumed, the power supplied through
each spring i (for brevity we omit the index in the following)
can be computed as

Pout = τkq̇.

In the BSA case, the spring torque is given as τk = K(θ−ψ),
and in the VSA case, it is τk = K(θ − q). As Braun et al.
describe in [26], the total power flow into the spring can be
computed as

Pin = Pout + Ės,

where Ės is the time derivative of the spring energy. In case
of the BSA, this term can be directly computed as

Ės = K(θ − ψ)(θ̇ − ψ̇),

while in the VSA case, we have to explicitly consider the time
derivative of the stiffness adjustment, i.e.

Ės =
1

2
K̇(θ − q)2 +K(θ − q)(θ̇ − q̇).

Power source M Es El
Pin Pout

Fig. 4. Power flow of the BSA actuator. The only source of power is the
motor M for changing the equilibrium position of the spring.

Power source M1

M2

Es El

Pin1

Pin2

Pout

Fig. 5. Power flow of the VSA actuator. There are two sources of power:
The motor M1 for changing the equilibrium position of the spring and the
motor M2 for the stiffness adjustment mechanism.

E. Frictional Contact Model
In the previous subsections, we have dealt with idealized

models. This serves as a basis to compare BSA with VSA
on a conceptual level. However, in real-world scenarios, the
transition between the different actuator modes might be not
fully instantaneous.

To take this into account, we introduce a more realistic
model of the switch-and-hold mechanism in this section. The
mechanism is modeled as a pair of two friction-disc-clutches
similar to e.g. [27], [28]. One clutch serves as a brake and the
other one connects the spring to the link inertia.

Each clutch can exhibit two operating states, either it is
sticking or slipping. The state is determined by the relative
velocity between the frames that the clutch connects. If the
clutch brakes, the spring, ψ̇ = 0 must hold. Otherwise, if the
spring is connected to the link, ψ̇ = q̇. There is one braking
and one connecting clutch per switch-and-hold mechanism

each, giving a total number of four clutches. We therefore
need to monitor four different relative velocities. As in [29],
we define

gA := ψ̇1, gB := ψ̇1 − q̇1,
gC := ψ̇2, gD := ψ̇2 − q̇2,

and introduce the index sets

I := {A,B,C,D},
Is := {i ∈ I | gi = 0},
Id := {i ∈ I | gi 6= 0}.

Here, I contains the indices of all four clutches, Is gathers
the indices of all sticking clutches and Id includes the indices
of all slipping clutches. Using the Jacobian

Γi :=
∂gi
∂ξ

, i ∈ I,

we can state the equations of motion for the double pendulum

Πξ̈ + η + τ k =
∑
i∈Is

ΓT
i ζs,i +

∑
i∈Id

ΓT
i ζd,i. (11)

In case of sticking contacts, the static contact torques ζs,i can
be computed similar to (3):

ζs,i = (ΓiΠ
−1ΓT

i )
−1ΓiΠ

−1(−τ k − η), i ∈ Is. (12)

The dynamic contact torque in case of a slipping contact is
calculated from Coulomb’s friction law

ζd,i = −sign(gi)µdRFn,i︸ ︷︷ ︸
=:Mi

, i ∈ Id. (13)

Here, µd is the dynamic friction coefficient, R is the effective
radius and Fn,j is the normal force of the clutch and Mj is
the clutch torque.

Hybrid system model. Again, we can formulate the
dynamics as a hybrid system model. With the introduction
of additional slipping modes, there are no more jumps with
impulsive effects on the states. Let us first consider a single
sticking contact. Since this contact is potentially slipping,
we monitor the dynamic torque that the clutch can provide
according to (13). If this torque falls below the static friction
threshold, the contact begins to slip (see Fig. 6). The corre-
sponding index is removed from Is and added to Id. On the
other hand, a slipping contact remains slipping as long as the
relative velocity g is unequal to zero. If there is a zero-crossing
for the relative velocity and the dynamic friction torque is

|ζd| ≥ |ζs|

|ζd| < |ζs|

g = 0

Sticking Slipping

ζs

t
tseparatetconnect

ζdζ

Fig. 6. Hybrid state transition and schematic plot of the friction torque.
Depending on whether the contact is sticking or slipping, either ζs or ζd is
applied.
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TABLE II
INDEX SETS FOR THE DIFFERENT MODES OF THE FRICTIONAL CONTACT

MODEL.

I1s = {} I1d = I
I2s = {A} I2d = {B,C,D}
I3s = {B} I3d = {A,C,D}
I4s = {C} I4d = {A,B,D}
I5s = {D} I5d = {A,B,C}
I6s = {A,C} I6d = {B,D}
I7s = {A,D} I7d = {B,C}
I8s = {B,C} I8d = {A,D}
I9s = {B,D} I9d = {A,C}

greater or equal to the static friction torque, the contact begins
to stick again, and the respective index is removed from Id
and added to Is.

The different sticking and slipping contacts give rise to a
number of different modes that are summarized in Table II.
Here, we have excluded modes that contain more than three
sticking contacts, since that would defy the purpose of the
switch-and-hold mechanism. We define the index set Q =
{1, . . . , 9}, the state x := [θ, ξ, ξ̇]T ∈ R10 and the control
input u = uθ ∈ R2. For each mode p ∈ Q, we can formulate
the state space dynamics

ẋ = fp(x,u)

:=


uθ
ξ̇

Π−1(−η − τ k +
∑
i∈Ips

ΓT
i ζs,i +

∑
i∈Ipd

ΓT
j ζd,i)

 . (14)

Note that there are no discontinuities in the state when
transitioning from one mode to another, i.e. x+ = x−. The
transitions between the modes are state-dependent. The user
can open and close the clutches by providing an appropriate
signal for the clutch torques Mi in (13).

III. EVALUATION

To evaluate the performance of the proposed actuator, we
did simulation studies for comparing bi-stiffness with variable
stiffness actuation. For solving the optimal control problems,
we employ a direct collocation method using a third-degree
Legendre polynomial. The formulation of the optimal control
problems is described in the next section.

A. Optimal Control

As in [4], we aim to maximize the end-link velocity of the
double pendulum. We can deal with the switching by solving
a multi-stage optimization problem using direct collocation
[30]. This is similar to gait optimization in legged locomotion,
which involves switching from a flight to a stance phase
[31]. The decision variables are the continuous state trajectory
x(t), the control effort time-series u(t) and the duration of
each mode Tp, which defines our switching signal. Note,
that we have to select the switching sequence in advance. In
each stage, we enforce the dynamics by introducing defect
constraints (6). At time Tp, we initialize the next stage by

evaluating the jump map in (7). The optimal control problem
can now be stated as

min
x(t),u(t),Tp

J (x(t),u(t))

s.t. ẋ(t) = fp(x(t),u(t)), t ≤ Tp
x+
p (t) = gp(x

−(t)), t = Tp

x(t) ∈ X , u(t) ∈ U .

Here, the sets X and U indicate the constraints on the state
and control effort, respectively. In case of the VSA, there is
no switching and the problem reduces to finding the states and
control inputs only:

min
x(t),u(t)

J (x(t),u(t))

s.t. ẋ(t) = f(x(t),u(t))

x(t) ∈ X , u(t) ∈ U .

We will conduct two experiments. First, we maximize the end-
link velocity vTCP 2 using

J (x(t),u(t)) = −vTCP (x(t)) = −J(q(t))q̇(t). (15)

Then, we fix the final velocity to a desired value and minimize
the control effort

J (x(t),u(t)) = ‖u(t)‖2. (16)

B. Software
The double pendulum was modeled using MATLAB’s

Symbolic Math Toolbox. The optimal control problem was
formulated using CasADi [32], and solved using Ipopt [33].

C. Simulations
For evaluation, we conducted three simulation experiments.

First, we maximize the end-link velocity of a double pendu-
lum, either driven by two VSAs or BSAs. Then, we fix the
end-link velocity to a desired value and solve for different final
times while minimizing the control effort. Finally, we apply
the optimal control solution obtained in the first simulation to
the model with frictional contacts. The values of mechanical
parameters for the double pendulum, except the spring inertia,
are taken from [4] and are summarized in Table III.

The double pendulum is always initialized at its equilibrium
position at t = 0 s. The maximum motor velocity is set to 2
rad/s for all experiments. The allowed stiffness range for the
VSA is set to Ki ∈ [0, 100] Nm/rad. The maximum stiffness
adjustment rate is set to K̇i,max = 650 Nm/(rad s).3

Simulation 1: Maximization of end-link velocity. In
the first experiment, we investigate both actuators’ ability
to produce an explosive movement, i.e. a rapid, coordinated
conversion of the stored spring energy to kinetic energy. The
optimal control problem is to minimize J given by (15) for
a fixed final time of tf = 0.2 s and without state constraints.
The result of the optimization for BSA and VSA are shown in

2TCP: Tool Center Point
3Since the VSA employs a second actuator for the stiffness adjustment,

we limit the stiffness adjustment for a fair comparison. We found that for
a maximum stiffness adjustment rate of K̇i,max = 650 Nm/ (rad s), both
actuators are able to reach a final velocity of slightly below 3 m/s, when
maximizing the final velocity. This way, both systems are equivalent in terms
of the input power.
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Fig. 7. BSA results for maximizing the end-link velocity. The kinetic and
potential energy are denoted by Ek and Ep, respectively.

TABLE III
MECHANICAL PARAMETERS

Parameter Symbol Value
Mass Link 1 m1 5 kg
Mass Link 2 m2 4.6 kg

Moment of Inertia Link 1 Jl1 0.0453 kg m2

Moment of Inertia Link 2 Jl2 0.0492 kg m2

Length Link 1 l1 0.34 m
Length Link 2 l2 0.34 m

Spring Inertia Joint 1 (BSA) Js1 0.001 kg m2

Spring Inertia Joint 2 (BSA) Js2 0.001 kg m2

Figs. 7 and 8, respectively. Furthermore, the power flow into
the spring can be seen in Fig. 9. The motion of the double
pendulum is depicted by a line sketch in Fig. 11. The VSA-
driven double pendulum is able to reach a final velocity of
2.97 m/s, while the BSA-driven system is able to reach 2.99
m/s.

Observation 1: Energy transfer timing. For the switching
sequence, we initialize the actuator such that joint 1 is in
SEA mode and joint 2 is fully decoupled. The second link
is therefore moved passively by being inertially coupled to
the first link. During motion, the spring energy Ep,2 is
continuously built up in the second joint. Just before the end
of the time-interval, the launch is initiated at Tp = 0.157 s.
Joint 2 is now coupled to the link and joint 1 is decoupled.
Joint 2 rapidly transfers all of its stored spring energy in a
trebuchet-like manner, resulting in the high end-link velocity.

Observation 2: Avoiding negative work. The power input
to the spring for each joint according to (11) is shown in
Fig. 9. The amount of positive and negative work done by
each actuator is summarized in Fig. 10. In total, the energy
injected by each actuator is 10.16 J for the BSA and 9.92 J for
the VSA. The decoupling of joint 1 after launch initiation is
quite important since it would otherwise brake the movement.
Since it does not contribute to the motion anymore, the power
input from the motor is zero, as can be seen in Fig. 9. Thus,
there is no negative work done by the actuator.

Observation 3: VSA swing-up motion. From Fig. 8 and 11,
one can see that the motor velocity in the first joint closely

Fig. 8. VSA results for maximizing the end-link velocity.

Fig. 9. Mechanical power supplied through the spring. Left: BSA. Right:
VSA. The green and red areas under the curves correspond to the positive
and negative work done by the spring.

resembles the BSA case. Moreover, the signal of the second
motor switches once between the minimum and maximum
motor velocity, and the stiffness signal is of a triangular shape.
Furthermore, the optimizer strategy seems to be a combination
of a resonant excitation plus some additional energy input by
the stiffness adjustment. The resonance behavior can also be
seen in the power flow plot for the second VSA joint in Fig.
9. Finally, after the first joint has transmitted its energy, the
spring is actually detrimental since it brakes the motion, which
can be seen in the power flow P1,V SA for joint 1.

Simulation 2: Minimization of control effort for different
final times. In the second experiment, the final velocity was
set to a desired value of 3 m/s. The objective function was
changed to minimize the control effort, i.e. the motor velocity
and additionally, in the VSA case, the stiffness adjustment
rate. We repeated the experiment for different time horizons
tf ranging from 0.2 s to 1.0 s. Fig. 12 shows the time-series of
potential and kinetic energy for both systems for the respective
final times.

Observation 1: Consistent BSA launch sequences. The BSA
consistently executes a launch sequence for all final times. As
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Fig. 10. Work done by each actuator.

0.0s 0.05s 0.1s 0.15s 0.2s

B
SA

V
SA

Fig. 11. Line sketch of the double pendulum’s motion for BSA and VSA.
Note that optimizer found a solution where the VSA throws to the left. This
does not affect, however, the magnitude of the final velocity.

can be seen in the energy plot in Fig. 12, potential energy is
always continuously build-up until the end of the time-interval
and then rapidly released.

Observation 2: Increasing oscillatory behavior in VSA
swing up. In contrast, the VSA shows more and more of a
resonant excitation strategy as the final time increases. The
transfer of potential energy is not timed as in the BSA case.
Rather, we can observe large oscillations from potential to
kinetic energy.

Simulation 3: Maximization of end-link velocity using
the frictional contact model. To further substantiate our
previously obtained results, we apply the optimal control from
Simulation 1 to the system with a frictional contact model
according to Section II-E. For computing the dynamic friction
torque, we utilize ramp functions that increase the torque from
zero to its maximum value, Mj,max = 30 Nm or vice versa.
The times tseparate and tconnect were set to 0.02 s. These
values lie in the range of what typical electromagnetic clutches

Fig. 12. Total potential (dashed) and kinetic energy (solid) for different final
times tf = 0.2 . . . 1s (indicated by color gradient from green to blue).

Fig. 13. Simulation results for the BSA system assuming a frictional contact
model.

8

ψ̇1 = 0

ψ̇2 = q̇2

|ζd,C |< |ζs,C |
3
|ζd,B |< |ζs,B |

1
|ζd,A|≥|ζs,A|

27
|ζd,D|≥|ζs,D|

Fig. 14. Hybrid automaton for the BSA system with a frictional contact
model. The definitions of the sliding and sticking index sets are described in
Table II .

and brakes are able to achieve [34]. The simulation results are
depicted in Fig. 13. To illustrate the effects of the transient
dynamics better, we have added the spring velocity in the plot.
In the end, the system reaches a final velocity of 2.7 m/s. The
hybrid transition graph is shown in Fig. 14.
Observation 1: Transient slipping does not affect the energy
transfer timing. With the frictional contact model, there is a
considerable mechanical delay. We have accounted for this fact
by engaging and disengaging the respective clutches earlier
than in the idealized case at Tp = 0.147 s, i.e. 10 ms prior.
With this correction, the overall behaviour of the clutch-and-
hold mechanism is not altered. It is still possible to achieve
the same clear launch sequence as in the ideal case. However,
precise knowledge on the switching times of the clutches is
required.
Observation 2: Loss of energy due to friction. When viewing

the potential and kinetic energy plots in Fig. 13, it is evident
that the potential energy during the slipping phase cannot be
further increased. In contrast to the ideal BSA, the potential
energy stored in the second spring Ep,2 remains below 5 J.
This can be explained by the fact that the clutch actually
dissipates some of the kinetic energy by friction. Despite the
frictional losses, we reach 90 % of the end-link velocity in
comparison to the idealized case.

IV. CONCLUSION

In this paper, we proposed a Bi-Stiffness Actuation concept
incorporating a switch-and-hold clutch mechanism with which
it is possible to fully decouple the link from the joint mech-
anism while keeping the elastic energy stored. Inspired by
explosive movements like throwing in biological systems, we
defined a control sequence switching between coupled (being
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equivalent to a SEA) and decoupled modes, which resembles
the proximo-distal sequence in biomechanics. By doing this,
the energy transfer timing can be intuitively controlled and
directly optimized for when maximizing the end-link velocity.
Our numerical experiments demonstrated that a BSA can
achieve similar performance compared to a power-equivalent
VSA. Furthermore, our investigation showed that with VSAs,
the optimal behavior would inevitably increase the oscillatory
amplitude. In contrast, our proposed mechanism can produce
a clear launch sequence for a desired end-link velocity with
varying final times. This makes the energy storage and release
to be intuitively controllable, and exposes transfer timing to be
an explicitly optimizable parameter. We were also able to show
that even when considering a frictional contact model that
enabled transient slipping modes during switching, we were
able to achieve a similar launch sequence and energy transfer
timing as in the ideal case. In the future, we aim to realize
a first prototype of the proposed actuator concept. Another
important extension is the application to a more complex robot
model to examine how the results of energy transfer timing
can also be applied to this case.
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[7] H. Jöris, A. E. Van Muyen, G. van Ingen Schenau, and H. Kemper,
“Force, velocity and energy flow during the overarm throw in female
handball players,” Journal of biomechanics, vol. 18, no. 6, pp. 409–414,
1985.

[8] K. Lehnertz, “Molekularmechanische Grundlagen der Muskelkraft bei
Schlagbewegungen,” Leistungssport, vol. 5, pp. 27–34, 1984.

[9] M. Plooij, W. Wolfslag, and M. Wisse, “Clutched Elastic Actuators,”
IEEE/ASME Transactions on Mechatronics, vol. 22, no. 2, pp. 739–750,
2017.
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